
Deep Reinforcement Learning for
Partially-Observable Markov Decision

Processes

Cameron Gordon 42370057

Supervisor: Dr Nan Ye

A thesis submitted for the degree of Masters of Science at

The University of Queensland in 2020

School of Mathematics and Physics

I give consent for copies of this report to be made available, as a learning resource, to students

enrolled at The University of Queensland.

1 Abstract

This thesis has investigated the use of Deep Reinforcement Learning for classic Partially-
Observable Markov Decision Process problems such as Tiger, Rock Sample, and Tag. It
has examined a number of deep reinforcement learning algorithms and techniques found
within recent literature. This has included testing Deep Q-Networks (DQN), Deep Recurrent
Q-Networks (DRQN), Action-specific Deep Recurrent Q-Networks (ADRQN), the use of
‘flooding’ regularisation described in Ishida et al. (2020), the use of pre-initialisation of ex-
pert experiences, and the use of prioritised experience replay described in Schaul et al. (2015).

The contributions of the thesis include development of a Python POMDPX parser and simu-
lator to enable the use of deep learning libraries such as Keras on POMDPX problems, and a
POMDPX to OpenAI Gym environment converter. An extension to ADRQN is proposed
in which step rewards are included with the input of observation-action history, termed
RADRQN. Benchmark comparison is made to leading tree-based POMDP solvers such as
DESPOT found in Ye et al. (2017). Of the tested models, the combination of pre-initialisation
of expert experiences and prioritised experience replay produces the best results for the
deep reinforcement learning models. Trained policies involving multiple step behaviours
are observed for each of the tested POMDP problems, however results are well below the
performance of benchmark algorithms such as DESPOT, POMCP, or SARSOP. Trained
policies show path dependence on experiences encountered early in the training cycle.

All code and data used in this project is made available at https://github.com/iciac/POMDP.

2

https://github.com/iciac/POMDP

Contents

1 Abstract 2

2 Introduction 5

3 Literature Review 7
3.1 Partially Observable Markov Decision Processes 7

3.1.1 Mathematical Definition . 7
3.1.2 Exploration-Exploitation Trade-Off 8
3.1.3 Types of POMDPs . 10

3.2 Algorithms for POMDPs . 11
3.2.1 Overview . 11
3.2.2 Deep Neural Networks . 11
3.2.3 Reinforcement Learning . 13
3.2.4 Deep Reinforcement Learning Models 15

4 Methodology 18
4.1 Overview . 18
4.2 POMDPX Parser . 18
4.3 Problem Descriptions and Benchmarks . 19
4.4 Model Extensions . 21
4.5 RADQN / RADRQN . 21
4.6 Flooding . 22
4.7 Pre-initialisation / Expert Buffer . 23
4.8 Model Architectures and Hyperparameters 23

5 Results 25
5.1 Maximum Scores . 25
5.2 Algorithm Scores . 26

6 Discussion 29
6.1 Comparison to Tree-Based Planning Algorithms 29
6.2 Recurrent Algorithms and Flooding Evaluation 30
6.3 Training Times . 30
6.4 Fixed Policies . 31
6.5 POMDPX to OpenAI Gym Converter . 33

7 Conclusion 35

Bibliography 36

A List of Key Deep Learning Algorithms 41

3

B Comparative Results 42

List of Figures

1 Historical benchmark problems . 5
2 POMDP decision network . 8
4 Three-layer perceptron in Rosenblatt (1962) 12
3 Cajal neuron drawing . 12
5 Hierarchical structure of the visual cortex 13
6 Methodology overview . 18
7 POMDPX code example . 20
8 RockSample (7,8) . 20
9 Flooding in Ishida et al. (2020) . 22
10 Network diagram . 24
11 Distribution of evaluated policies . 27
12 Max and min scores . 28
13 Fixed policies . 32

List of Tables

1 Common descriptions of POMDPs . 10
2 List of classic POMDP problems . 19
3 Benchmarks . 21
4 Max evaluated scores . 25
5 Maximum score (algorithms) . 26
6 Model training times . 31
7 Fixed policies . 32

List of Algorithms

1 Value iteration . 9
2 Q-Learning . 15
3 Deep Q-Learning with experience replay 16

4

2 Introduction

Partially-observable environments comprise the majority of situations that a decision-making
agent must contend with in the world [1, 2]. Robotic measurements may be faulty or un-
known. Humans must navigate an epistemically uncertain world from birth. Businesses
must react decisively on the basis of limited market intelligence. How to handle this limited
observability is both a practical question, and one of great contemporary interest to artificial
intelligence [3]. Historical benchmarks for artificial intelligence problems include Chess,
Checkers, Go, Othello, and Backgammon [4]. More recently benchmarks have shifted to
include video games, such as Atari, Doom, and Starcraft [5, 6, 7]. This shift has in part been
driven by a desire to model more complicated domains, and to examine artificial agents
contending with difficulties introduced by partial-observability.

(a) Kasparov v Deep Blue
game 6 final position, 1997.
Credit: The Future of Things

(b) Lee Sedol v AlphaGo
game 2 final position, 2016.
Credit: Wikipedia

(c) Breakout, a key game in
the Atari2600 Arcade Learn-
ing Environment.

Figure 1: Historical benchmark problems

Recent advances in Deep Reinforcement Learning (DRL), which combines deep artificial
neural networks with techniques found in reinforcement learning have led to tremendous
results on key benchmark problems. However, current DRL methods generally deal with a
fully observable environment or use a fully observable approximation. This motivates the
current thesis, which seeks to examine how DRL algorithms perform on problems framed as
Partially Observable Markov Decision Processes (POMDPs), including those specifically
developed for POMDPs such as Deep Recurrent Q-Networks (DRQN) [8]. In particular, it is
intended to examine DRL performance on classic POMDP problems such as Rock Sample
in order to compare these results to performance obtained from non-neural POMDP solvers
such as DESPOT and POMCP which use tree-based simulations [9, 10].

Our experiments show that a simple neural network is able to produce policies comprising
complex multi-step behaviour on POMDP problems. On the Tiger problem performance is
comparable to tree-based solvers in some instances. On larger POMDP problems such as
Rock Sample and Tag, the best performance obtained by our models is still well below com-

5

https://thefutureofthings.com/3686-do-we-think-they-think/

parable benchmarks. Policy performance is inconsistently obtained over repeated training
cycles, indicating the presence of local optima and path dependence. Through this thesis
we have examined a number of recent DRL algorithms and techniques noted for improved
performance on both fully and partially observed problems. Best performance is obtained
for models incorporating additional information from step actions and rewards, prioritised
experience replay, and for those initialised with demonstrated policies from expert algorithms.

This thesis is structured as follows: first, a mathematical description of POMDPs is provided.
Secondly, an overview of deep reinforcement learning is provided, including a description of
key algorithms and techniques examined in this thesis. Third, we provide a description of the
POMDPX parser and simulator developed for this thesis, along with model extensions such as
expert buffers, flooding regularisation, and reward concatenation. Results are included from
1,100 trained policies obtained across the Tiger, Tag, and Rock Sample problems. Next we
compare the performance of our models to tree-based planning algorithms. Finally, we discuss
potential explanations for our results and possible extensions to our experiments including
a POMDPX to OpenAI Gym converter, different exploration strategies, and combination
solvers using both planning and deep reinforcement learning techniques.

6

3 Literature Review

3.1 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process is a generalisation of a Markov Decision
Process (MDP) in which the agent cannot directly observe the state of the world, and instead
must make decisions on the basis of an observation (Kaelbling et al. (1998)) [2]. This
uncertainty presents computational difficulties for many planning algorithms [3]. In this
section we provide a mathematical description of POMDPs.

3.1.1 Mathematical Definition

A Partially Observable Markov Decision Process (POMDP) definition is provided in Kael-
bling et al. (1998), which builds upon previous descriptions in the operations research
literature (e.g. Åström (1965) who examined control problems with incomplete state infor-
mation) [2, 1]. We follow Kaelbling et al. (1998) closely in our description of a POMDP,
which is defined as the tuple <S,A,R,T,O,Ω>:

• S : State set of the environment

• A : Action set of the agent

• Ω : Observation set of the environment

• R : S×A→ R - Reward given for an action a in state s

• T : S×A→Π(S) - State-transition function. T (s,a,s′) is the transition probability of
moving from state s to state s′ following an action a. Π(S) represents the set of all
probability distributions across world states.

• O : S×A→Π(Ω) - Observation function. O(s′,a,o) is the probability that o will be
observed when an action a leads to state s′. Π(Ω) represents the set of all probability
distributions across observations.

A discount factor γ ∈ [0,1] and planning horizon H is often provided in POMDP descriptions.
A MDP is defined similarly to a POMDP as the tuple <S,A,R,T >. While a MDP is fully-
observable, a POMDP only receives indirect information on the state from the observation.
Hence, the agent must develop a belief b(s) on the state of the environment. We can define
the belief space Π(S) as the set of all possible probability distributions over the state space.
Note that while the state space S may be discrete and finite, the belief space is infinite except
when S contains only one element. Figure 2 shows a POMDP as a decision network. A policy
πt assigns an action to a belief at time t. A direct mapping may be prohibitively expensive to
compute, which is a principal difficulty encountered in POMDP problems.

7

Figure 2: POMDP Decision Network. The true state St of the network is hidden to the agent,
which instead observes Ot and takes action At , leading to reward Rt and state St+1 Source:
Poole and Mackworth (2017) [11]

The objective function for the agent is to maximise the total expected discounted reward
across the duration of the problem. Specifically, we want to find a policy π maximising:

E
[

H
∑

t=0
γ trt

]
[2].

Kaelbling et al. (1998) notes that b(s) is a sufficient statistic for the past history of the
problem. Using this property the problem can be reformulated as a belief MDP which retains
the Markov property of being memoryless. As with MDPs this reformulation may be used to
calculate an optimal policy π∗ by applying simple dynamic programming techniques such as
value iteration. Value iteration for a fully-observable MDP involves determining an optimal
value V ∗t (s) for each state, which is the maximum expected total discounted reward that can
be achieved from s when planning for a horizon of t. The optimal policy is defined by:

π
∗
t (s) = argmaxa

[
R(s,a)+ γ ∑

s′∈S
T (s,a,s′)V ∗t−1(s

′)

]
(1)

We include the value iteration algorithm (Algorithm 1) from Kaelbling et al. (1998) as an
example of a known optimal policy for MDPs, equivalent to exhaustive search. This is
polynomial with respect to both A and S [3]. The dimensionality of the action, state, and
belief state make calculating an optimal policy impractical in practice. This issue is referred
to as the Curse of Dimensionality [3], and motivates the use of a wide class of POMDP
solvers, including the Deep Reinforcement Learning techniques examined in this thesis.

3.1.2 Exploration-Exploitation Trade-Off

Many convergence results for solving POMDPs using reinforcement learning algorithms
require that each state-action pair is sampled an infinite number of times in the limit [3]. As a
result, practical solution techniques for POMDPs face an exploration-exploitation trade-off,

8

Algorithm 1: Value Iteration (Source: Kaelbling et al. 1998) [2])

1 Set V0(s) = 0 for all s and set small ε;
2 for all t do
3 for all s ∈ S do
4 for all a ∈ A do
5 Qa

t (s) = R(s,a)+ γ ∑
s′∈S

T (s,a,s′)Vt−1(s′)

6 end
7 Vt(s) = maxaQa

t (s)

8 end
9 until |Vt(s)−Vt−1(s)|< ε for all s ∈ S

10 end

in which the solver must trade between exploiting a currently perceived optimal solution
and exploring for improvements. The overarching goal of these methods is to balance this
convergence with computational limitations. This issue is well described in the literature
(see Sutton and Barto (2018)), so we will limit this section to outlining two strategies for
handling the issue as applied in deep reinforcement learning [3].

The first is the ε-greedy method, which addresses the issue by introducing random action
selection. Define Qt(a) as an estimated value for taking action a at time t. The greedy action
is given by: At = argmax

a
Qt(a). ε-greedy selects a random action with probability small ε ,

and the greedy action with probability (1−ε). So long as ε > 0, each action will be sampled
sufficiently in the limit. Sutton and Barto (2018) cite Watkins (1989) as a potential first usage,
however the technique is likely older [3]. The simplicity and effectiveness of ε-greedy has
led to its extensive use in reinforcement learning algorithms (see Algorithm 2: Q-Learning,
Algorithm 3: Deep Q-Networks) [12, 3]. Annealing methods which start with a high ε term
that is progressively decreased over training are also common [4]. This will lead to greater
random exploration in earlier phases of training.

The second method is to directly control the exploration parameter through control mech-
anisms. This may involve multiple levels of exploration. An example of this is found in
Badia et al. (2020), which uses a meta-controller to vary exploration terms depending on
the specifics of a problem. At the problem level exploration is determined by an exploration-
discount rate pair. For each problem iteration this pair is selected by a meta-controller, which
explores different parameter settings by itself following an ε-greedy selection algorithm.
This technique is an area of active enquiry, and its use led to above human-level performance
across a key benchmark of 57 Atari Learning Environment problems in Badia et al. (2020).
This suite involved environments with varied characteristics, including sparse rewards and

9

long-term credit assignment issues, requiring exploration to be varied for the problem level
[13].

3.1.3 Types of POMDPs

The generality of POMDPs for defining problems is well known [14]. This has led to focus
on specific subtypes of POMDPs, combining congruent fields of research. Here we outline a
few of the important variants. Worth noting is that the distinction between these variants is
not strict and each may be considered a case of the more general POMDP definition.

Single Agent Multi-Agent

General Case POMDP Partially-Observable Stochastic Game

Fully-Observed MDP Extensive Form Game

Mixed Observability MOMDP / SMDP Factored Observation Game

Table 1: Common descriptions of POMDPs

A special factored form of the POMDP introduced in Ong et al. (2009) separates fully and
partially observable state-space components in a Mixed Observability Markov Decision
Process (MOMDP) [15]. Separating these components into disjoint subspaces enables a
more compact representation of the belief-space. A system with fully-observed parameters is
rarely encountered in reality, so the authors additionally introduce the concept of Pseudo Full
Observability which treats certain partially-observable parameters as if fully-observable. This
decomposition to varying components of certainty has similarities to the idea of Semi-Markov
Decision Processes (SMDP) found in Lane et al. (2002) [16].

It is possible to redefine a multi-agent game (often defined as an Extensive Form Game) as a
single agent POMDP under certain conditions (the intuition is that moves from the opposing
N players are drawn from an unobserved probability distribution) [17]. The OpenSpiel testing
environment developed by DeepMind is embedded within this framework [18]. Parallel lines
of research in game theory additionally enabled the convergence of Stochastic Games and
POMDPs to Partially-Observable Stochastic Games (POSG), while further extending this
approach to a factored representation has resulted in Factored Observation Games (FOG)
[19, 20].

Finally, it is worth noting that fully-observable problems with an initial hidden state variable
are classed as POMDPs. As Whiteson et al. (2011) note, drawing the initial state of a
specific MDP environment M from a generalised environment G =< Θ,µ > (where Θ

is a set of environments, µ defines a distribution across the environment parameters, and
θ ∈Θ represents the parameters of M) means that the generalised environment G will be a
POMDP even if the specific MDP M is fully-observable. In this situation, the specific draw

10

θ represents a hidden state factor defining the initial state [21]. This has implications for
testing suites such as OpenAI Gym, which randomises starting conditions for fully-observed
problem instances. All problems in the suite may be considered POMDPs [22].

3.2 Algorithms for POMDPs

3.2.1 Overview

Recent progress in algorithms for both partially and fully-observable problems has been
rapid, driven by a combination of a increases to computing power and breakthroughs across
multiple fields. Interest in Deep Reinforcement Learning in particular has been aided by
high-profile successes in benchmark problems including AlphaGo [23], the self-playing
AlphaZero [24], and AlphaStar [5].

Important advances have resulted from the combination of reinforcement learning (RL),
and deep artificial neural networks (ANNs). RL has been investigated from early days in
operations research [1], and has roots in psychological research (e.g. Pavlovian responses
and Skinner Boxes) and neuroscience [3]. Algorithms combining RL with ANNs, such as
TD-Learning led to early breakthroughs in artificial intelligence such as TD-Gammon (the
first program to play at a human level in Backgammon) [25, 3, 26]. In following sections
we’ll first provide an overview of ANNs and deep learning, followed by key ideas within re-
inforcement learning, and finally the combined field of Deep Reinforcement Learning (DRL).

3.2.2 Deep Neural Networks

The use of artificial neural networks is based on the structure of neuronal cells. The basic
structure of a neuron involves a cell body (the soma), dendrites, synapses, and an axon.
Neurotransmitters released between synapses change the internal electrical charge within the
soma. Once this shifts from the resting membrane potential of -70mV to a critical value of
around -55mV to -50mV, gated ion channels within the soma open enabling an all-or-nothing
action potential to be released through the axon [27, 28]. Dendrites enable the connection of
a neuron to the axons of a large number of other neurons (in humans, the average neuron has
approx. 7,000 synaptic connections) [28]. Artificial neurons attempt to replicate this structure.

While various models of neuronal firing exist in the literature, (including the differential
equation based Hodgkin-Huxley model) the model most commonly applied in ANNs is
closely related to the integrate-and-fire model found in McCulloch and Pitts (1943) and
perceptron introduced in Rosenblatt (1958) [29, 27, 30]. The integration is given by y = xT w
where y is the output, x is the input vector, and w is a vector of weights. The firing is given
by a threshold activation function f (y) [31]. A common activation is the rectifier linear unit
(ReLU) f (y) = max(0,y), popular in deep neural networks due to its performance and com-

11

Figure 4: Three-layer perceptron in Rosenblatt (1962)

putational efficiency - however other activations such as the sigmoid function f (y) = 1
1+e−y

are also common [32, 33].

Figure 3: Drawing of a neu-
ron by Santiago Ramón y
Cajal, clearly showing the
cell body (soma), dentrites,
and axon.

The structure of hierarchical, deep neural networks is
largely based on the structure found in the visual
cortex in which information is filtered and processed
by sequential layers of neurons [34, 28]. Individually,
single-layer perceptrons are able to learn linearly sep-
arable functions, but are unable to learn more compli-
cated representations such as non-linearities or invari-
ance to transformations [35]. While perceptrons are of-
ten considered synonymous with the single-layer ver-
sion, some authors contend that Rosenblatt’s concep-
tion of a perceptron was flexible enough to permit
the existence of multiple layers [36]. Indeed, Rosenblatt
(1962) shows a network that is described within the
book as a three-layer perceptron [37]. As it is, multi-
layer perceptrons (MLPs) with at least one hidden layer
are known to approximate any continuous real function
[38].

Before defining deep learning, we’ll first note the role of a tech-
nique that opened the way for research to extend beyond MLPs
to more complicated architectures: the backpropagation algorithm described by Rumelhart,
Hinton, and Williams (1986). The backpropagation algorithm consists of two parts: a forward
pass in which a network calculates a predicted output and error relative to the true output; and
a backward pass in which weights in the network are changed to minimise this error function
with respect to the weights through gradient descent. The authors define the error function as
L = 1

2(YPredicted−YTarget)
2. Gradient descent updates network weights by successive use of

the chain rules: ∂L
∂xi

= ∂L
∂yi

dyi
dxi

and ∂L
∂wi j

= ∂L
∂xi

∂xi
∂wi j

where i, j refer to indices of specific neurons;
yi refers to the output of neuron i; xi is the input to neuron i; and wi j is the weight between
neurons i and j. This method enabled the practical training of weights in MLPs and led to a
resurgence of research in the field [39, 35].

12

Figure 5: Hierarchical structure of
the visual cortex, showing the in-
creased complexity of representation
at each layer of neurons. Source:
Pinel (2017)

LeCun, Bengio, and Hinton (2015) popularised the
term deep learning to refer to learning by MLP struc-
tures characterised by a large number of layers (e.g.
5-20) [35]. These networks contain many millions of
weight parameters, while the recent GPT-3 has 175
billion [40]. The authors point to 2006 as the reemer-
gence of deep network research, with fast advances in
image recognition and speech recognition. Applying
convolutional layers and pooling led to additional im-
provements (informally, a convolution passes inputs
through a filter in the form of the discrete convolu-
tional function, while pooling outputs the max or aver-
age activation within a region). The use of deep convo-
lutional networks has led to successes across multiple
domains, including Deep Reinforcement Learning to
which we will return to shortly [26, 35].

3.2.3 Reinforcement Learning

In this section we give a brief overview of key techniques and considerations in reinforce-
ment learning. Reinforcement learning is a learning technique in which an agent explores an
environment and modifies its behaviour in response to obtained rewards. Sutton and Barto
(2018) define it as a third branch of machine learning alongside supervised and unsupervised
learning. The early development of reinforcement learning was in the field of animal psy-
chology, particularly influenced by the association learning experiments of Ivan Pavlov. In
the 1950’s, reinforcement learning principles became influential in optimal control theory, in
which it was integrated with dynamic programming techniques for the solution of MDP and
POMDP problems [3, 1]. We briefly outline below key techniques which have emerged from
Reinforcement Learning which have been particularly influential, especially in recent work
on Deep Reinforcement Learning. We have already provided an overview of Value Iteration
(see: Algorithm 1). More detailed techniques in Reinforcement Learning exist, including
those which incorporate planning algorithms (e.g. SARSOP, DESPOT), however we aim
here to give a brief taste of the fundamental concepts before moving onto DRL [9]. We
follow Sutton and Barto (2018) closely for our notation.

Concept 1 (Temporal Difference (TD) Learning)

TD-Learning examines the difference between a current value and the predicted value for
a given state. TD-Learning has neural analogues to the role of dopamine in behavioural
formation [3]. Tesauro (1995) combined TD-Learning and a simple neural network to achieve

13

human-level performance in Backgammon [25]. The TD-Error δt is defined as:

δt = Rt+1 + γV (St+1)−V (St) (2)

The back-up function for TD-Learning is given by:

V (St)←V (St)+α[Rt+1 + γV (St+1)−V (St)] (3)

Which can be rewritten as:
V (St)←V (St)+αδt (4)

Where V (St) is the value of a state at time t, α is the learning rate, and δt is the TD-Error.
Through the back-up function, rewards for future states are propagated to the stored value of
earlier states [3].

Concept 2 (Q-Learning and Double Q-Learning)

Q-Learning is a method for learning a table of state-action pairs Q(s,a) (the ‘Q-Table’),
which was first described in Watkins (1989) [41, 3]. The method involves iterative updates
of the Q-Table based on observed rewards. As can be seen in Algorithm 2, the method es-
sentially applies TD-Learning on the state-action pairs. Watkins and Dayan (1992) provides
a proof that the Q-Learning algorithm converges with probability 1 to the optimal policy,
assuming that each entry in the algorithm is sampled an infinite number of times [42, 3].
This resampling requirement limits the practical application of Q-Learning to small MDP
problems, and motivates approximation methods (e.g. DNNs) to handle larger problems. A
common policy applied to ensure continued exploration for Q-Learning is ε-greedy, which
selects a random action with probability ε and a greedy action (the current best action as per
the Q-Table) with probability (1− ε). The key update for Q-Learning is given by:

Q(St ,At)← Q(St ,At)+α[Rt+1 + γmaxaQ(St+1,a)−Q(St ,At)] (5)

Action value entries within the Q-Table can be optimistically biased, meaning that the action
becomes overvalued by the model. This is because maxaQ(S′,a) is used as a proxy for
the maximum expected value of the next state (Hasselt (2010)) [43]. This may degrade
performance on stochastic environments. To account for this a common extension of Q-
Learning is to apply Double Q-Learning which uses two Q-Tables and changes the key
update of the form [43, 3]:

Q1(St ,At)← Q1(St ,At)+α[Rt+1 + γQ2(St+1,maxaQ1(St+1,a))−Q1(St ,At)] (6)

Q2(St ,At)← Q2(St ,At)+α[Rt+1 + γQ1(St+1,maxaQ2(St+1,a))−Q2(St ,At)] (7)

Where the algorithm updates Q1 with probability 0.5 at each step and Q2 otherwise. The
reasoning here is to separate the estimation of the action value and the selection of an action

14

at each time step. This avoids a maximization bias that occurs where these two processes
are combined in single Q-Learning. The resulting Double Q-Learning does not fully solve
the issue of bias within the algorithm, however it does reduce the severity. As with single
Q-Learning, Double Q-Learning converges to an optimal policy in the limit [43].

Algorithm 2: Q-Learning (Source: Sutton and Barto (2018) [3])

1 Set α ∈ (0,1] and small ε > 0
2 Initialise Q(s,a) for all s ∈ S, a ∈ A(s)
3 for each episode do
4 Initialise S;
5 for each step in episode do
6 Choose A from S using policy on Q;
7 Take action A, observe R, S′;
8 Q(S,A)← Q(S,A)+α[R+ γmaxaQ(S′,a)−Q(S,A)];
9 S← S′;

10 end
11 until S is terminal ;

12 end

3.2.4 Deep Reinforcement Learning Models

Deep Reinforcement learning combines techniques from both reinforcement learning and
deep neural networks. Below we give a brief overview on Deep Q-Networks (DQN), Deep
Recurrent Q-Networks (DRQN), and Action-specific Deep Recurrent Q-Networks (ADRQN).
We also highlight the use of Prioritised Experience Replay (PER), which has been shown to
be a key component of performance in the literature (e.g. see Hessel et al. (2018)) [44, 45].

Concept 3 (DQN)

Deep Q-Networks (DQN) combine Q-Learning with a Deep Neural Network (DNN). The
DNN estimates the value of state-action pairs Q(s,a) for network weights θ . Gradient
descent is applied to update weights to minimise the error between the predicted Q(s,a)
value and observed values. Algorithm 3 shows the pseudocode of the algorithm combined
with experience replay (Lin (1992)), which maintains a buffer of previously seen experiences
[12].1 While TD-Gammon represents an early link between ANNs and learning algorithms,
the modern source paper for DQN is considered to be Mnih et al. (2013), which was further
extended in Mnih et al. (2015) to achieve human-level performance on Atari Learning
Environment benchmarks [46, 12]. Similar to Q-Learning, the technique has been extended
to a Double Deep Q-Network (DDQN) to reduce estimation bias (Hasselt et al. (2015)) [47].

1Note that x in the original algorithm refers to pixel input from an Atari screen, while φ refers to a prepro-
cessing step.

15

Algorithm 3: Deep Q-Learning with Experience Replay (Source: Mnih et al.
(2013) [12])

1 Initialise replay memory D to capacity N
2 Initialise Q(s,a) with random weights
3 for t, T do
4 Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1);
5 for each step in episode do
6 With probability ε select a random action at ;
7 Otherwise select at = maxaQ∗(φ(st),a;θ);
8 Take action at , observe reward rt , and image x1;
9 Set st+1 = st , at , xt+1, and preprocess φt+1 = φ(st+1) ;

10 Store transition (φt ,at ,rt ,φt+1) in D ;
11 Sample random minibatch transitions (φ j,a j,r j,φ j+1) from D ;
12 Set

y j =

r j, for terminal φ j+1

r j + γmaxa′Q(φ j+1,a′;θ) for non-terminal φ j+1

Perform a gradient descent step on (y j−Q(φ j,a j;θ))2 ;

13 end
14 end

Concept 4 (DRQN)

Deep Recurrent Q-Networks (DRQN) includes a recurrent layer (e.g. LSTM) before the
final output layer in a DQN. Recurrent models have been shown to perform well for tasks
requiring memory or sequential representation across multiple domains [48, 8]. The model
is passed an input of a history of observations (o1,o2, . . . ,ot). The DRQN algorithm was
introduced in Hausknecht and Stone (2015), which showed improved performance relative
to the non-recurrent DQN on Atari problems which had frames removed from the observed
environment by ‘flickering’. Applying a secondary Q-Network (DDRQN) has been shown to
improve performance [8].

Concept 5 (ADRQN)

Action-specific Deep Recurrent Q-Networks (ADRQN) are an extension of DRQN which
include actions along with observations as the model input. Concretely, the model is passed
an unprocessed input of a history of action-observation pairs ((a0,o1),(a1,o2), . . . ,(at−1,ot)).
In theory, this leads to a closer coupling of actions, observations, and outcomes. The model
is introduced in Zhu et al. (2018), which showed improved performance relative to DRQN
and DDRQN on Atari problems when frames were removed from the observed environment

16

through ‘flickering’ [49]. In later sections, we detail tests to a natural extension to this method
in which the step reward is included in the action-observation history.

Concept 6 (Prioritised Experience Replay)

Prioritised Experience Replay (PER) is a technique introduced in Schaul et al. (2016), which
maintains a buffer of experiences that are resampled during the training cycle of a DQN
algorithm [44]. Experiences are stored as a tuple of the state, action, reward, next state, and
the absolute TD-Error < st ,at ,rt ,st+1, |δt |>. The method extends Experience Replay (which
uses random sampling from stored experiences), by prioritising experiences perceived to be
important for training. The priority of an experience i is defined as pi = |δi|+ ε where ε is a
small minimum priority value. The probability of sampling an experience i is defined as:

P(i) =
pα

i

∑k pα
k

(8)

Where α is a hyperparameter that determines the degree of prioritisation, usually set at
α = 0.5 [50, 44]. Note that α = 0 leads to a uniform distribution. The use of Prioritised
Experience Replay is highly influential. In the Rainbow experiments performed in Hessel
et al. (2018), PER is noted as the most important algorithmic modification for DQN with
performance improvements over other techniques such as Double Q-Learning, Dueling
Networks, and Distributional Networks [45]. Experience replay without prioritisation was
incorporated in early DQN implementations such as Mnih et al. (2013) and (2015), which
can be seen in Algorithm 3 [12, 46]. All DRL models examined in this thesis use either PER
or the original Experience Replay introduced in Lin (1992) [51].

17

4 Methodology

4.1 Overview

In this section we provide an overview of our methodology for testing deep reinforcement
learning algorithms on POMDPs. Experiments have been conducted on Tiger, Rock Sample,
and Tag - three benchmark problems within the literature. These problems were specified in
POMDPX, a file format for specifying details of POMDP problems. A Python parser and
simulator for POMDPX files was developed for this thesis, which has extended an existing
implementation to handle key terms and wildcards. This has enabled a wider variety of
problems within benchmark POMDPX repositories to be simulated directly in Python.

This section is structured as follows: first, we cover details of the POMDPX file format and
the Python parser and simulator developed for this project. Secondly, we provide a description
of the Tiger, Tag, and Rock Sample problems. Third we outline the algorithms and techniques
that have been examined in this thesis, and the testing approach including hyperparameter
tuning. The techniques examined in this thesis includes the use of ‘flooding’ regularisation
recently introduced in Ishida et al. (2020) [52], the use of pre-initialised memory buffers
filled from an ‘expert’ policy, and prioritised experience replay. The algorithms tested have
included many variants of DQN, DRQN, ADQN, ADRQN, including a natural extension to
ADRQN that includes the step reward within the observation that we term RADRQN.

POMDPX File POMDPX Parser Simulator (Training)

Deep Neural Network Trained Model Simulator
(Evaluation)Expert BufferExpert (DESPOT)

Flooding (Custom
Loss Function)

Prioritised Experience
Replay

Figure 6: Flowchart showing the interaction between the different modules.

4.2 POMDPX Parser

POMDPX is a file format for specifying POMDP problems [53]. The format is based on
XML and allows direct encoding of key parameters and dynamics of a problem, including
the Variables, State Transition, Observation Function, and Reward (example code below).
Documentation of the format is provided by the Approximate POMDP Planning Toolkit
(APPL) developed at the National University of Singapore [53]. The original toolkit was de-

18

veloped in C++, and a number of implementations of key benchmark problems are specified
in the POMDPX format.

POMDP Name Source
Autonomous Underwater Vehicle S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee (2009)

[15]

Homecare H. Kurniawati, D. Hsu, and W.S. Lee. (2008) [54]

Underwater Navigation H. Kurniawati, D. Hsu, and W.S. Lee. (2008) [54]

Rock Sample T. Smith and R. Simmons. (2004) [55]

Tag J. Pineau, G. Gordon, and S. Thrun (2003) [56]

Tiger L.P. Kaelbling, M.L. Littman, and A.R. Cassandra
(1998) [2]

Battleship Silver and Veness (2010) [10]

POCMAN Silver and Veness (2010) [10]

Table 2: List of classic POMDP problems. Source: APPL [53].

To enable testing across these benchmark problems using Python libraries, we sourced a
parser from Github (https://github.com/larics/python-pomdp) to extract the relevant data
structures [57]. This parser was able to handle basic POMDPX files, but did not include
wildcard (i.e. the ‘*’ character, which provides for all possible values in a given position in
the syntax, and the ‘-’ character which repeats assignment for multiple objects) or keyword
(i.e. ‘uniform’ and ‘identity’, providing shorthand for matrix values and distributions) terms
as specified in the APPL documentation [58]. See Figure 7 for an example of this syntax.
As part of this thesis, the original parser was extended to enable these terms to be specified.
This is useful as many of the benchmark problems provided on the APPL website (see Table
2 for example benchmarks) require these terms. The codebase for this project is provided as
a public Github repository at https://github.com/iciac/POMDP.

To run the parsed POMDPX files a simulator was built. At each time step it handles the
state-transition T (s′|s,a), observation O(o|s′,a), and reward R(s,a) functions. It additionally
provides for the concatenation of the fully-observable components of the state and observa-
tion enabling mixed observability problems such as MOMDPs to be specified. Histories of
observations are able to be passed to DRL algorithms (e.g. DRQN) to determine step actions.

4.3 Problem Descriptions and Benchmarks

Testing has been performed on Tiger, RockSample, and Tag POMDPX files. The Tiger
problem is a classic control problem described in Kaelbling et al. (1998) [2]. The problem

19

https://github.com/larics/python-pomdp
https://github.com/iciac/POMDP

< S t a t e T r a n s i t i o n F u n c t i o n >
<CondProb >

<Var >rock_1 </ Var >
< P a r e n t > a c t i o n _ r o v e r r o v e r _ 0 rock_0 </ P a r e n t >
< Parame te r >

<Ent ry >
< I n s t a n c e >ame ∗ − − </ I n s t a n c e >
<ProbTable > i d e n t i t y < / ProbTable >

</ Ent ry >
</ Pa rame te r >

</ CondProb >
</ S t a t e T r a n s i t i o n F u n c t i o n >

Figure 7: Example POMDPX code showing the use of wildcard and keyword terms to specify
a State Transition Function. Source: APPL POMDPX Documentation.

involves an agent deciding between opening two doors - behind one is a pot of gold, behind
the other a tiger. At each time step, the agent chooses between three actions: opening the left
or right door, or listening for the tiger’s growl which provides an imperfect observation to
the beast’s position. Opening the door with the tiger leads to a reward of −100, opening the
door with the gold leads to a reward of 10, and listening incurs a reward of −1. Listening
has a probability of 0.85 of correctly indicating the tiger’s position.

Figure 8: RockSample (7,8). Source:
Smith and Simmons (2004)

The Rock Sample problem is described in Smith
and Simmons (2004) [55]. The problem involves
a robot on a m× n grid. A number of ores ex-
ist on the grid, with either ‘good’ or ‘bad’ qual-
ity. The robot may move in the four cardinal di-
rections and is equipped with a long-range sensor
for imperfectly testing each of the rocks. For a
map of k ores the robot selects from the actions:
{N,S,E,W,Sample,Check1, . . . ,Checkk}. The robot
receives a reward of 10 for sampling a ‘good’ ore, a
reward of −10 for sampling a ‘bad’ ore, a reward of
10 for exiting the map to the East, and a reward of
−100 for exiting the map from another direction.

The Tag problem is described in Pineau et al. (2003) [56]. The problem involves a robot
and target on a grid of 29 positions. The position of the robot is fully observed, however the
position of the target is hidden unless both are on the same grid square. The target is biased

20

towards moving away from the robot at each time step with probability = 0.8. The robot
selects from the actions {North,South,East,West,Catch} and receives a reward of −1 for
moving, 10 for successfully tagging the target, and −10 for using Catch when the target is in
a different square.

Benchmark results for these problems found within the literature are provided in Appendix
B: Comparative Results. To record direct benchmark comparison we have used the DESPOT
POMDP solver described in Ye et al. (2017) [9]. For the Tiger problem, we average the
policy performance of DESPOT at step 15 over 150 policy evaluations [9]. Rock Sample
(3,1) is tested for 10 steps over 150 iterations. Note that Rock Sample (3,1) is a toy problem
with a known optimal solution and an expected average score of 15. As will be discussed in
following sections, despite the simplicity of this problem tested deep reinforcement learning
algorithms often had difficulty in converging to the correct solution. Tag and Rock Sample
(7,8) are each also tested for 30 steps, 150 iterations. We additionally list results from manual
human control on Tiger and Rock Sample (3,1) as a further benchmark.

This gives the following set of comparison benchmarks:

Benchmark Tiger Tag RS (3,1) RS (7,8)

DESPOT (discounted) 8.71 (2.28) -7.05 (0.53) 13.2 (0.35) 20.06 (0.35)

DESPOT (undiscounted) 13.45 (3.14) -9.27 (0.90) 15.4 (0.41) 40.6 (1.07)

Human (undiscounted) 4.8 (1.3) - 13.2 (0.25) -

Table 3: Benchmarks for tested problems using the DESPOT solver in Ye et al. (2017).
Human benchmarks also recorded for the smaller POMDPs examined (Tiger and Rock
Sample (3,1). Average scores recorded (standard errors in brackets).

4.4 Model Extensions

The POMDPX environment has allowed us to examine DRL algorithms found within the
literature (DQN, DRQN, ADQN, ADRQN) along with the following extensions: ‘flooding’
regularisation described in Ishida et al. (2020), pre-intitialisation / ‘expert-buffers’, and an
extension to ADRQN that includes rewards within the observation that we term RADRQN.
A brief overview of these techniques is provided below.

4.5 RADQN / RADRQN

A natural extension of the ADRQN introduced in Zhu et al. (2018) is to concatenate the
step reward to the action-observation history. In this way, the model is passed an input of
a history of reward-action-observation pairs ((a0,o1,r1),(a1,o2,r2), . . . ,(at−1,ot ,rt)). The
justification to this approach is to tighter couple the representation of previous actions,

21

observations, and outcomes. This is motivated by noting that the reward for taking action a
in observed state o may change depending on the previous history. As an example, in the
Rock Sample problem, a ‘good’ rock will turn to ‘bad’ after being correctly sampled. While
it may be eventually learned by sampling and reward transmission through a backup function
that taking the same action twice in the same square may lead to a different outcome, an
agent may more easily observe this by noting that a reward of 10 has already been obtained
in the previous step. To our knowledge, this extension of ADRQN is a novel approach.

4.6 Flooding

The use of flooding reguarlisation is described in Ishida et al. (2020) as a method of handling
overfitting within trained models [52]. The algorithm is simply described: for a learning
objective function J(θ), a regularization term b is added as: J̃(θ) = |J(θ)−b|+b, where θ

are the model parameters and J̃(θ) is the regularised objective function. This adds a floor
to the objective function. Once the floor is reached through gradient descent the model will
continue train leading to expected increased generalization. Note that b = 0 corresponds
to the original objective function. The below image gives the intuition of this approach.
The authors experimentally show performance improvement on image classification tasks
including MNIST and CIFAR-100.

Figure 9: Intuiting behind flooding regularisation. Training continues following the training
loss reaching the flooding value. This enables a random walk over parameters, with the
possibility of further test performance improvement. Source: Ishida et al. (2020) [52].

To our knowledge flooding has only been applied using supervised learning on image
classification. Overfitting may also be observed within reinforcement learning, with an agent
potentially converging to a fixed policy on a deterministic environment and sensitive to small
perturbations [59]. In stochastic or partially-observable environments there is a need for the
resulting policy to maintain generalization. To test this in the context of deep reinforcement
learning we applied flooding values of 0, 0.1, 0.25, 0.5, 2, and 5 to the tested problems.

22

4.7 Pre-initialisation / Expert Buffer

The use of human experiences as initialisation is a common technique in deep reinforcement
learning, as demonstrated in Silver et al. (2015) [23]. Systems that have access to demonstra-
tion data have been shown to improve performance on DRL algorithms, including reduced
training time as shown in the Deep Q-Learning from Demonstrations (DQfD) model in
Hester et al. (2017) [60]. In order to investigate the use of demonstration experiences, we
incorporated two pre-initialisations of the memory buffer for prioritised experience replay.
One involves an ‘expert buffer’, involving a pretrained policy that partially fills the model
memory buffer (buffer size: 2,000 steps) and biases the learning process to positive expec-
tation policies. The ‘expert buffers’ for Rock Sample (3,1) and Tiger were constructed by
manually playing the problems and recording the human policies for 10 iterations, copied to
100 iterations (1,500 steps) and 330 iterations (1,420 steps) respectively. For Rock Sample
(7,8) and Tag, an expert policy was formed by running DESPOT, a tree-based POMDP solver
described in Ye et al. (2017) for 150 iterations [9]. As can be demonstrated in the below
results, the approach leads to a policy including the optimal sequence of actions being learned
on Rock Sample (3,1) which was not able to be demonstrated on other tested experiments
despite a wide range of hyperparameter tuning. Memory buffer initialisations based on
random sampling was also tested to trial an expert-agnostic pre-initialisation, however did
not demonstrate meaningful experimental results.

4.8 Model Architectures and Hyperparameters

Four literature models (DQN, DRQN, ADQN, ADRQN) were tested on the Tiger, Rock
Sample and Tag problems. We additionally examine a reward concatenation extension to
ADRQN termed as RADQN / RADRQN. Each model takes a history input of the previous N
steps of observations. The ADQN and ADRQN models combine each observation with the
previous action, while the RADQN and RADRQN models also include the previous step
reward. The DQN, ADQN, and RADQN models have the structure (Dense(50), Dense(50),
Dense(50)) with ReLu activations. The DRQN, ADRQN, and RADRQN models have the
structure (Dense(50), Dense(50), Dense(50), LSTM(50)) with ReLu activations. The loss
function used is the mean square error, and the Adam optimizer described in Kingma and Ba
(2014) is used with a learning rate of 0.001 [61].

Hyperparameter tuning was conducted through the use of a grid search on batch size (32, 64,
128), learning rate (0.01, 0.001, 0.0001), network layer width (5, 15, 50), training periods, and
input history lengths. Prototype model architectures involving convolutions, deep networks
(e.g. more than 5 layers), wide networks (network layer width of 300), skip connections,
and training delays were trialed, however these had little observable change and were not
used for repeated experiments. Training is conducted for T = 150 to 8,000 episodes for each

23

model. Each episode is a full ‘run’ of the problem instance. Epsilon-greedy annealing is
conducted for each model such that an initial ε = 1 is annealed to ε = 0.01 after 50% of the
training time (ε-decay= exp

{ ln0.01
0.5T

}
).

Figure 10: Network diagram for
the non-recurrent models. The input
layer is a one-hot encoding of the in-
put N-step observation history. There
are three fully-connected hidden lay-
ers. The output layer contains neu-
rons corresponding to the number of
actions. The recurrent models con-
tain an additional LSTM layer be-
tween the final hidden layer and the
output layer.

Testing is conducted by setting ε = 0 and evaluat-
ing the fixed network policy on randomly initialised
runs of the problem for the evaluation period of 300
episodes. For each trained policy the average episode
score over the evaluation period is reported, along
with the minimum and maximum episode score. As
repeated experiments with the same parameter and
hyperparameter settings were observed to produce
different final policies, experiments were repeated
to observe distributions for our analysis. In total a
dataset of 1,100 final policies was developed for the
following results.

24

5 Results

In this section we examine the performance of our algorithms and parameter specifications on
the tested problems. We first examine the maximum final policy scores on the problems across
all algorithms, and compare this to benchmarked policies. This is followed by examining the
distribution of evaluated policies achieved by the tested algorithms, and compare performance
of algorithms incorporating an Expert Buffer or Prioritised Experience Replay. Finally we
note training time considerations of the tested algorithms.

5.1 Maximum Scores

Tiger Tag Rock Sample (3,1) Rock Sample (7,8)
Score 10.72 (0.28) -25.31 (0.85) 15.03 (0.29) 10.5 (0.28)

Model ADQN RADQN ADQN ADQN

Training Period 8000 150 300 400

Expert Buffer - X X X

PER - X - X

Network Width 50 50 50 15

History Length 15 10 10 30

Max Steps 15 30 30 30

Flooding Value 0 0 0 0

Human 4.8 (1.3) - 13.2 (0.25) -

DESPOT* 8.71 (2.28) -7.05 (0.53) 13.2 (0.35) 20.06 (0.35)

DESPOT** 13.45 (3.14) -9.27 (0.9) 15.4 (0.41) 40.6 (1.07)

Table 4: Maximum scores (evaluated average) on the tested problems. Network width refers
to the number of neurons in the dense network layers. * discounted, ** undiscounted

The maximum scores (averaged over the evaluated policy) achieved for the tested problems
across all parameter values are given in Table 4. The maximum policy score is chosen as a
comparison as it indicates whether comparable performance to other algorithms is able to be
achieved by our models. Policy distributions are provided in Figure 11 to indicate generalised
performance over multiple trained policies. Each of the maximum scores are achieved by
ADQN or RADQN models. Expert Buffers feature in the top performance on Tag, Rock
Sample (3,1), and Rock Sample (7,8). Prioritised Experience Replay features in the Tag and
Rock Sample (7,8) problems. Performance on Tiger (10.72) exceeds the recorded human
result (4.8) and discounted DESPOT score (8.71), but is less than the undiscounted DESPOT
score of 13.45. In POMDP literature it is common to compare discounted scores, however
this is principally for forward-looking planning algorithms determining a discounted policy
expected value. Our evaluation method looks at average recorded scores over an evaluation
period. As a result the undiscounted DESPOT score is the truer comparison. Performance on

25

Rock Sample (3,1) of 15.03 is higher than the recorded human experience and discounted
DESPOT score of 13.2, and comparable to the undiscounted DESPOT score of 15.4. Perfor-
mance on Tag (-25.31) and Rock Sample (7,8) is substantially lower than both the discounted
(-7.05 and 20.06 respectively) and undiscounted (-9.27 and 40.6) DESPOT comparisons.

5.2 Algorithm Scores

Algorithm Tiger Tag Rock Sample (3,1) Rock Sample (7,8)
RADQN 1.79 -25.31 10 10.13

ADQN 10.72 -25.85 15.03 10.5
DQN -2.68 -26.46 10.67 10.13

DRQN -15 -28.46 10.13 10

ADRQN -15 -28.61 10 10

RADRQN -15 -27.81 10 10

Table 5: Maximum scores (evaluated average) for each algorithm on the tested problems.

In Table 5 we give the maximum score obtained by each of the algorithms on the tested prob-
lems. Algorithms incorporating action or reward information are observed to have improved
performance. Taking the maximum achieved score gives an indication of the best observed
performance, but does not give a general performance indication of the algorithm as multiple
runs may produce different final policies. In Figure 11 we provide the distribution of policies
obtained under the different algorithms. We can immediately note the recurrent networks
converging on ‘fixed’ policies, which will be examined more closely in the Discussion
section. We may note here indications that Expert Buffer and Prioritised Experience Replay
affect the evaluated performance with wider distributions and higher policy scores.

In addition, we provide the distribution of maximum and minimum iteration scores over
evaluated policies in Figure 12. This provides an indication of the complexity of the observed
behaviour, which may be missed by examining the maximum average score or distribution
of scores alone. As an indication, we can note that the maximum iteration score achieved by
policies on Rock Sample (7,8) is 40 (indicating sampling 3 rocks correctly and leaving the
environment). The average score for the same trained network however is below 10, due to
negative iteration results on other testing iterations. It is worth observing that algorithms in-
corporating Expert Buffers and Prioritised Experience Replay achieve higher maximum and
lower minimum episode scores as the agent interacts with partially-observed components of
the problems. This is considered in more detail in the ‘Fixed Policy’ section of the discussion.

26

●

●●

●

Actions

Results and

Actions

E
xperience R

eplay
P

E
R

FALSE TRUE FALSE TRUE FALSE TRUE

−20

−10

0

10

−20

−10

0

10

Expert Buffer

A
ve

ra
ge

 S
co

re
Model

ADQN

ADRQN

DQN

DRQN

RADQN

RADRQN

Tiger

●

●●
●
●
●

●

Actions

Results and

Actions

E
xperience R

eplay
P

E
R

FALSE TRUE FALSE TRUE FALSE TRUE

−35.0

−32.5

−30.0

−27.5

−25.0

−35.0

−32.5

−30.0

−27.5

−25.0

Expert Buffer

A
ve

ra
ge

 S
co

re

Model

ADQN

ADRQN

DQN

DRQN

RADQN

RADRQN

Tag

●

●
●

●

●

●

●

Actions

Results and

Actions

E
xperience R

eplay
P

E
R

FALSE TRUE FALSE TRUE FALSE TRUE

−10

0

10

20

−10

0

10

20

Expert Buffer

A
ve

ra
ge

 S
co

re

Model

ADQN

ADRQN

DQN

DRQN

RADQN

RADRQN

Rock Sample (3,1)

●●
●

●
●

Actions

Results and

Actions

E
xperience R

eplay
P

E
R

FALSE TRUE FALSE TRUE FALSE TRUE

−10

0

10

20

−10

0

10

20

Expert Buffer

A
ve

ra
ge

 S
co

re

Model

ADQN

ADRQN

DQN

DRQN

RADQN

RADRQN

Rock Sample (7,8)

Figure 11: Distribution of evaluated policies. Policies for recurrent policies converge to fixed
action sequences. Prioritised Experience Replay is associated with higher scores.

27

FA
LS

E
T

R
U

E

FALSE TRUE

0

20

40

0

20

40

Expert Buffer

M
ax

 S
co

re

●

●

●

●
●

●
●● ●

FA
LS

E
T

R
U

E

FALSE TRUE

−600

−400

−200

0

−600

−400

−200

0

Expert Buffer

M
in

 S
co

re
Tiger

●
●●●
●●●●●●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

FA
LS

E
T

R
U

E

FALSE TRUE

−30

−20

−10

0

10

−30

−20

−10

0

10

Expert Buffer

M
ax

 S
co

re

●
●

●

●
●●

●
●
●

●●●

●

●

●

●

FA
LS

E
T

R
U

E

FALSE TRUE

−300

−200

−100

−300

−200

−100

Expert Buffer

M
in

 S
co

re

Tag

●

●

●●●●●●

●

●●●●

●●●●●

FA
LS

E
T

R
U

E

FALSE TRUE

−10

0

10

20

−10

0

10

20

Expert Buffer

M
ax

 S
co

re

●
●

●

●

●

●

●

●

●

●

●

FA
LS

E
T

R
U

E

FALSE TRUE

−100

−50

0

−100

−50

0

Expert Buffer

M
in

 S
co

re

Rock Sample (3,1)

●

●

●●●●●●

●●●●

FA
LS

E
T

R
U

E

FALSE TRUE

0

10

20

30

40

0

10

20

30

40

Expert Buffer

M
ax

 S
co

re

●
●
●●●●●●

●
●
●

●●

FA
LS

E
T

R
U

E

FALSE TRUE

−100

−50

0

−100

−50

0

Expert Buffer

M
in

 S
co

re
Rock Sample (7,8)

Figure 12: Left (max) and right (min) score obtained from evaluated policies on tested
environments. Expert Buffer and Prioritised Experience Replay use leads to higher maximum
and minimum values obtained on Rock Sample (7,8) and Tag.

28

6 Discussion

Results indicate that learning complex behaviours has occurred for the tested problems,
however policy scores are substantially below comparison benchmarks within the literature.
In certain instances, trained policies for the Tiger and Rock Sample (3,1) are able to converge
to optimal policies. However, as the distributional of evaluated policies in Figure 11 shows,
this is inconsistently obtained. In this section we discuss in more detail the policies that have
been learned, and the observed differences between the tested algorithms and techniques. In
addition, we highlight the training times for each of the tested algorithms. We also discuss the
convergence of algorithms to ‘fixed policies’ that avoid worst-case results but do not receive
rewards involving partially-observed information. We note the potential for improvements
to be obtained by modifying the exploration strategy, and combining the algorithms with
simulation-based planning algorithms. Finally, we provide details of an additional module
developed in this thesis (a POMDPX to OpenAI Gym converter) which may be used for
future research in classic POMDP problems.

6.1 Comparison to Tree-Based Planning Algorithms

Our results are substantially below literature results for tree-based planning algorithms
such as SARSOP, POMCP, or DESPOT on the larger problems of Tag and Rock Sample
(7,8). These algorithms incorporate simulation based on direct access to model dynamics.
In contrast, the DRL algorithms examined by this thesis result in a policy as represented by
network weights learned over the course of training. The final evaluated policy fixes these
weights, and chooses each step action on this basis. As it incorporates no online simulation
of future states and instead relies on an implicit representation of past experiences.

The lack of step-by-step online simulation in our examined DRL algorithms is a potential
weakness compared to DESPOT and POMCP. Developing each state-action value prediction
from the Q-Network during network training is computationally intensive relative to a Monte
Carlo simulation of the problem. As such it is possible that planning based algorithms can
incorporate substantially more information to value representations than the DRL algorithms
given equivalent training time. As the following section ‘Training Times’ shows, the training
of individual policies is a time-intensive process with no guarantee of improved performance.
Rare state history sequences may be little unexplored during the learning process, which a
forward looking simulation would help address if encountered. Incorporating Monte Carlo
simulations into our algorithms at the training or evaluation stage may therefore lead to more
information incorporated into the network to increase performance.

One advantage of the examined DRL algorithms over the online planning algorithms is
the compactness of representation for the final policy. Online planning algorithms need to
simulate at each step to determine the next action. While this is faster than offline training of

29

a network, once trained a DRL policy requires little further computation across the evaluation
of the problem. The relative strengths of a deep network and simulation is recognised in the
literature. Highly successful DRL algorithms, such as AlphaStar, AlphaZero, and AlphaGo
use a combination of neural networks and simulation-based algorithms, such as Monte-Carlo
Tree Search [5, 23, 24, 3]. Examining these combined algorithms is beyond the scope of this
thesis, but it is suggested as a clear avenue for future research on the tested classic POMDP
problems.

6.2 Recurrent Algorithms and Flooding Evaluation

In our experimental results, the use of recurrent layers is not seen to provide a performance
improvement. This is surprising, given observed performance benefits of recurrent networks
on partially-observed problems in the literature. One potential explanation is the type of
partial-observability of the problem domain. While both Hauskneckt and Stone (2015) and
Zhu et al. (2017) examine problems with occluded temporal information through flickering
frames in Atari Learning Environments, the POMDP problems of Tiger and Rock Sample
are partially-observable due to the possibility of imperfect sensor information. In Tag, the
unobservability comes primarily from the lack of access to model dynamics [54]. Other
explanations include chosen hyperparameters and features, such as the learning rate. While
our selection mechanism for hyperparameters has included grid-based selection to cover a
wide variety of combinations it is always a possibility that an untested set of architecture
and hyperparameters may result in improved performance for recurrent networks. The use of
the LSTM layers is additionally shown to converge rapidly to a fixed policy (e.g. ‘always
listen’), potentially due to how the TD-error is propagated through the network. This is lower
than the optimal policy, and lower than the best obtained results. In this context, a primary
benefit of recurrent units (i.e. fast convergence on classification problems) may be thought of
as a form of overfitting that could inhibit exploration.

Flooding regularisation is not observed to positively or negatively affect algorithm perfor-
mance in any significant way. As results in Table 4 show, each of the maximum score policies
obtained contain no flooding value. Simple association of results did not show significant cor-
relation between flooding values and average policy scores. We do not rule out the potential
for flooding regularisation to positively affect performance in deep reinforcement learning,
but would require further testing to evaluate this claim in a statistically robust manner.

6.3 Training Times

As can be seen in Table 6, the use of recurrent units leads to a substantial increase in the re-
quired training time. As an example, when training on Rock Sample (7,8) for 3,000 iterations
a 1879% increase in training time between the RADQN and RADQRN models was observed.

30

This appears to be driven largely by the increase to the network parameters, however may
also reflect the implementation of LSTM layers within Keras.

Model Training Time (s) Score Parameters

DQN 829 10 14,263

ADQN 475 10 14,913

RADQN 540 10 14,963

DRQN 2,015 10 28,613

ADRQN 6,172 10 29,263

RADRQN 10,146 10 29,313

Table 6: Training times for recurrent and non-recurrent models on Rock Sample (7,8) trained
for 3,000 iterations. Use of recurrent units led to a 18x increase in training time for the
RADQN model, with no observed improvement in performance.

Increasing the number of training episodes is not a guarantee of improved performance. While
the highest score on the Tiger problem was obtained by training a model for 8,000 episodes,
the highest scores for the other test problems were each under 500. This is anomalous to
literature indicating performance improvements on DRL algorithms for long training times,
and it remains a possibility that further increased training may lead to shifts in performance
that could lead to higher scores. This is a potential limitation of our study.

A common observation with long training periods (i.e. more than 5,000 episodes) on the
tested problems was that trained policies would become fixed, as will be discussed below.
In general, reinforcement learning can be considered as the combination of two separate
problems: the exploration problem (collecting data), and the learning problem (performing
supervised learning on this data) [62]. In the following section, we discuss the exploration
problem as a potential cause of fixed policy convergence. However, we may alternatively
consider long training times as subject to potential overfitting on observed experiences.
Our tests on flooding regularisation were motivated by an attempt to correct for potential
overfitting on long training times, however did not have an appreciable impact on our results.
As a result we will need to consider other explanations for this behaviour.

6.4 Fixed Policies

In our results, we can distinguish between policies which learn a ‘fixed’ action response (e.g.
‘always-listen’ for the Tiger problem) independent of observation, and those that exhibit the
more complicated behaviour required to score highly on the tested problems. The below
fixed policies avoid the worst scores possible in the environment (e.g. by choosing the wrong
door in Tiger to receive -100, or stepping out of bounds in Tag), however prevent the agent

31

from receiving higher rewards requiring more complex behaviour.

Fixed Score Corresponding Policy
Tiger -15 Always ‘listen’

Tag -30 Never ‘capture’

Rock Sample (3,1) 10 Immediately exiting

Rock Sample (7,8) 0 and 10 Stepping back and forth or immediately exiting

Table 7: Observed policies that obtain a fixed score.

Note that these fixed policies avoid the observations of the problems. From this we can
make a few comments. The rewards from state-action pairs selected by the fixed policy
are highly certain leading to a tightly estimated Q-value. In contrast, rewards obtained
on the basis of a partially-obtained state can be not only uncertain but also contradic-
tory. This can lead to inhibition of learned behaviours during the training cycle. Consider
the Tiger problem: after receiving successive observations of ‘Tiger Left’, the agent may
correctly value the action ‘Open Right’ positively and choose this action. However, this
may still result in a reward of -100 due to the problem dynamics. The Q-values are ad-
justed negatively, and the previously learned behaviour may become inhibited if now
Q(‘Tiger Left’, ‘Listen’)≥Q(‘Tiger Left’, ’Open Right’). This is problematic with ε-greedy
annealing, as the behaviour will become not only less valued but less likely to be explored.

Figure 13: Convergence to different policies. The red line shows a policy converged to
the optimal sequence of actions. The yellow shows a policy that exits the environment
immediately for a certain 10 score. The blue shows a policy stepping back and forth for a
certain 0 score.

We note here similarities to experimental results in psychology and economics. The concept
of ‘learned helplessness’ was first described in Seligman (1967), and involves passivity in

32

response to repeated averse events independent of behaviour [63, 64]. The concept of true
helplessness may be formally described using our notation as conditional independence
of reward and action P(rt+1|at) = P(rt+1|¬at). Learned helplessness refers to situations
in which rewards are not truly independent (i.e. the agent has control), but that this is not
learned by the agent. Recent experiments in Maier and Seligman (2016) indicate that learned
helplessness may occur as an unlearning of the agent’s ability to control events in response
to averse outcomes - the agent avoids actions with potentially negative outcomes and instead
becomes passive (i.e. a fixed response) [63]. Lieder et al. (2013) provides a Bayesian learning
simulation study investigating learned helplessness in the presence of averse outcomes,
and shows that the presence of uncontrollable negative stimulus (compared to controllable
negative stimulus and no negative stimulus) inhibits learning, with many more samples of
relevant state-observation pairs required to overcome the contradictory information [65].

With this in mind it is possible that our models may have avoided convergence to fixed
policies with an alternative exploration strategy. In particular, applying an Upper-Confidence
Bound (UCB) to our exploration instead of ε-greedy annealing may have continued further
exploration of behaviours in the presence of contradictory rewards. UCB selects an action at
step t as:

at = argmax
a

(
Qt(a,st)+ c

√
ln(t)

Nt(a,st)

)
(9)

Where c is an exploration parameter, t is the current step, and Nt(a,st) is the number of times
action a has been selected for the current state. The term

√
ln(t)

Nt(a,st)
accounts for uncertainty

in the current estimate in state-action pairs [3]. This term reduces as the state-action pair is
repeatedly sampled. As such, it provides a bound on the potential value of a, and as such
will be more robust to uncertain or contradictory rewards. It should be noted that for our
purposes, we may easily replace Qt(a,st) here with an estimated Q-value Qt(a,ht ,θ) from
a DQN where ht refers to a history of observations and θ the model parameters. For the
Nt(a,st) term, an exact mapping of histories would suffer from the curse of dimensionality.
As such an approximate mapping could be considered to allow UCB to be implemented.

6.5 POMDPX to OpenAI Gym Converter

OpenAI Gym is a well-developed API for testing reinforcement learning algorithms [22].
Environments include a variety of classic control problems (e.g. CartPole, MountainCar)
from the reinforcement learning literature, along with the suite of games contained within
the Atari Learning Environment introduced in Bellamare et al. (2013) [7]. The Atari environ-
ments have the advantage that there are well-developed benchmarks to the problems (e.g.
Mnih et al. 2013, 2015; OpenAI Baselines) [12, 46, 66]. While all problems contained within
OpenAI Gym are classed as POMDPs, once initial conditions are set some may run as if
fully-observed, without the potential for measurement error or incomplete state information

33

that characterises the classic description of POMDPs in Åström (1965) [22, 21, 1]. To ac-
count for this and to test robustness to partial observability, authors such as Hausknecht and
Stone (2015) and Zhu et al. (2017) ‘flicker’ observations by removing frames [8, 49].

As well as enabling access to benchmark problems, the OpenAI Gym API also enables
access to efficient DRL algorithm implementations through the OpenAI Baselines suite [66].
The baselines are stable implementations of high-performance recent algorithms, such as
Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Trust
Region Policy Optimization (TRPO), and Soft Actor Critic (SAC). These policies are known
to perform well on Atari benchmarks and represent active advances in research performance.

Along with the standard suite of problems in OpenAI Gym, it is possible to encode POMDPs
as custom gym environments through a simple wrapper. As part of this thesis a POMDPX to
OpenAI Gym conversion wrapper was constructed. Full integration with the OpenAI Base-
lines modules was not finalised, but remains a natural extension for this project. This would
enable direct comparison on leading DRL algorithms on the POMDPX tested environments.

34

7 Conclusion

To summarise, this thesis has examined a number of DRL algorithms on classic POMDP
problems. Results for some policies obtained on the small problems of Tiger and Rock
Sample (3,1) exceed tested human policies, and are comparable to planning algorithms such
as DESPOT. However, this performance is inconsistently obtained, with repeated training
of policies receiving different final scores. Performance on larger problems such as Tag
and Rock Sample (7,8) is far below literature results for planning algorithms. The use of
expert buffers and prioritised experience replay is shown to increase performance, with more
complex behaviours observed in final policies using these methods. Flooding regularisation
is not shown to have impact on the tested algorithms. Potential causes for fixed policy
convergence have been discussed, including the chosen exploration strategy. Analogous
results in psychology and economics such as learned helplessness indicate the potential
use of POMDP models as models for testing behavioural theories. Immediately suggested
expansions for our results include the use of simulation and Monte-Carlo Tree search within
the DRL algorithm, and the testing of exploration strategies such as Upper Confidence Bound
to improve performance on these POMDP problems.

Our testing has included DRL algorithms noted for performance on fully and partially-
observed environments, including an extension to ADQRN that includes a concatenation
of the reward in the observation history. Evaluation policies for algorithms on the same
hyperparameters show a deal of variability between individual training, making it difficult to
claim that any individual algorithm has improved performance on the tested environments.
Nonetheless, we note that the best results on each problem were obtained on the ADQN and
RADQN models. In addition, we note that recurrent networks (ADRQN, DRQN, RADRQN)
appear to converge to a fixed policy quickly during the training process. This may inhibit
exploration required for convergence properties of DRL algorithms, reducing the best score
obtained using these methods to a local optima.

This thesis also contributes an extension of an existing basic POMDPX parser and simulator
in Python to handle keyword and wildcard terms, enabling the testing of DRL algorithms on
benchmark POMDP environments specified in the literature (including Tiger, Rock Sample,
and Tag). In addition, a POMDPX to OpenAI Gym environment converter was constructed
for this thesis. Full integration with OpenAI Baselines was not achieved, meaning that direct
comparison with further literature algorithms (such as Proximal Policy Optimization) on
these problems remains an open extension to this project. It is hypothesised that in absence
of incorporating a form of Monte Carlo simulation or optimistic exploration strategies such
as UCB, these algorithms may still be limited in comparison to solvers such as SARSOP and
DESPOT due to limited sampling of the potential policy space.

35

References

[1] K. J. Astrom, “Optimal control of markov decision processes with incomplete state
estimation,” Journal of Mathematical Analysis and Applications, vol. 10, pp. 174–205,
1965.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially
observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1, pp. 99–134,
1998.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. Adaptive
computation and machine learning series, Cambridge, Massachusetts: The MIT Press,
second edition ed., 2018.

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Global Edition.
Pearson Higher Ed, 2016.

[5] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al., “Grandmaster level in StarCraft II
using multi-agent reinforcement learning,” Nature, vol. 575, pp. 350–354, 2019.

[6] M. Kempka, M. Wydmuch, G. Runc, et al., “Vizdoom: A Doom-based AI research
platform for visual reinforcement learning,” 2016.

[7] M. G. Bellemare, Y. Naddaf, J. Veness, et al., “The arcade learning environment: An
evaluation platform for general agents,” Journal of Artificial Intelligence Research,
vol. 47, p. 253–279, 2013.

[8] M. J. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially Observable
MDPs,” Computing Research Repository, 2015.

[9] N. Ye, A. Somani, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP Planning with
Regularization,” Journal of Artificial Intelligence Research, vol. 58, pp. 231–266, 2017.

[10] D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,” in Advances in
Neural Information Processing Systems 23, pp. 2164–2172, 2010.

[11] D. Poole and A. Mackworth, Artificial Intelligence: Foundations of Computational
Agents. Cambridge, UK: Cambridge University Press, 2 ed., 2017.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement
learning,” 2013.

[13] A. P. Badia, B. Piot, S. Kapturowski, et al., “Agent57: Outperforming the atari human
benchmark,” 2020.

[14] T. Lane and S. William, “Why (PO)MDPs lose for spatial tasks and what to do about
it,” 2005.

36

[15] S. C. W. Ong, “POMDPs for robotic tasks with mixed observability,” p. 8, 2009.

[16] T. Lane and L. P. Kaelbling, “Nearly deterministic abstractions of markov deci-
sion processes,” in Eighteenth National Conference on Artificial Intelligence, (USA),
p. 260–266, American Association for Artificial Intelligence, 2002.

[17] H. B. McMahan and G. J. Gordon, “A unification of extensive-form games and markov
decision processes,” in Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 1, p. 86–93, 2007.

[18] M. Lanctot, E. Lockhart, J.-B. Lespiau, et al., “Openspiel: A framework for reinforce-
ment learning in games,” 2019.

[19] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dynamic programming for partially
observable stochastic games,” in Proceedings of the 19th National Conference on
Artifical Intelligence, p. 709–715, 2004.

[20] V. Kovařík, M. Schmid, N. Burch, et al., “Rethinking formal models of partially
observable multiagent decision making,” 2019.

[21] S. Whiteson, B. Tanner, M. E. Taylor, et al., “Protecting against evaluation overfitting
in empirical reinforcement learning,” in 2011 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pp. 120–127, 2011.

[22] G. Brockman, V. Cheung, L. Pettersson, et al., “OpenAI Gym,” 2016.

[23] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, vol. 529, pp. 484–503, 2016.

[24] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of Go without
human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[25] G. Tesauro, “Temporal difference learning and TD-Gammon,” Communications of the
ACM, vol. 38, no. 3, p. 58–68, 1995.

[26] S. Russell, Human Compatible: AI and the Problem of Control. Penguin UK, 2019.

[27] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. The MIT Press, 2005.

[28] J. Pinel and S. Barnes, Biopsychology. Pearson Education, 2017.

[29] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[30] F. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.,” Psychological Review, vol. 65 6, pp. 386–408, 1958.

37

[31] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2nd ed., 2010.

[32] R. H. R. Hahnloser and H. S. Seung, “Permitted and forbidden sets in symmetric
threshold-linear networks,” in Advances in Neural Information Processing Systems 13,
pp. 217–223, MIT Press, 2001.

[33] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2017.

[34] E. R. Kandel, In Search of Memory: The Emergence of a New Science of Mind. W. W.
Norton & Company, 2007.

[35] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p. 436,
2015.

[36] J. Peter, “Did Frank Rosenblatt invent deep learning in 1962? – UMass Computational
Phonology.”

[37] F. Rosenblatt, Principles of neurodynamics : perceptrons and the theory of brain
mechanisms. Washington: Spartan Books, 1962.

[38] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1989.

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations by
Back-propagating Errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[40] T. B. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,” 2020.

[41] C. Watkins, Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
UK, 1989.

[42] C. Watkins and P. Dayan, “Q-Learning,” in Machine Learning, pp. 279–292, 1992.

[43] H. V. Hasselt, “Double Q-Learning,” in Advances in Neural Information Processing
Systems 23, pp. 2613–2621, 2010.

[44] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” 2015.

[45] M. Hessel, J. Modayil, H. van Hasselt, et al., “Rainbow: Combining improvements in
deep reinforcement learning,” 2017.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[47] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double
Q-learning,” 2015.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

38

[49] P. Zhu, X. Li, P. Poupart, and G. Miao, “On improving deep reinforcement learning for
POMDPs,” 2018.

[50] D. Takeshi, “Understanding Prioritized Experience Replay,” 2019.

[51] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning
and teaching,” Machine Learning, vol. 8, no. 3–4, p. 293–321, 1992.

[52] T. Ishida, I. Yamane, T. Sakai, G. Niu, and M. Sugiyama, “Do we need zero training
loss after achieving zero training error?,” 2020.

[53] “Home Page - Approximate POMDP Planning Software.”

[54] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based pomdp planning
by approximating optimally reachable belief spaces,” in Proceedings of Robotics:
Science and Systems, 2008.

[55] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,” in Proceedings
of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, p. 520–527,
AUAI Press, 2004.

[56] J. Pineau, G. J. Gordon, and S. Thrun, “Point-based value iteration: An anytime al-
gorithm for pomdps.,” in International Joint Conference on Artificial Intelligence,
pp. 1025–1032, 2003.

[57] S. Vladimir and P. Frano, “POMDPx Parser Python Module,” 2017.

[58] “POMDPX File Format - Approximate POMDP Planning Software.”

[59] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfitting in deep
reinforcement learning,” 2018.

[60] T. Hester, M. Vecerik, O. Pietquin, et al., “Deep Q-Learning from demonstrations,”
2017.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[62] D. Seita, “Reinforcement learning is supervised learning on optimized data,” 2020.

[63] S. F. Maier and M. E. Seligman, “Learned helplessness at fifty: Insights from neuro-
science,” Psychological Review, vol. 123, no. 4, pp. 349–367, 2016.

[64] M. E. Seligman and S. F. Maier, “Failure to escape traumatic shocks,” Journal of
experimental psychology, vol. 74, no. 1, pp. 1–9, 1967.

[65] F. Lieder, N. Goodman, and Q. Huys, “Learned helplessness and generalization,”
pp. 900–905, 2013.

39

[66] P. Dhariwal, C. Hesse, O. Klimov, et al., “OpenAI Baselines.” https://github.com/
openai/baselines, 2017.

40

https://github.com/openai/baselines
https://github.com/openai/baselines

A List of Key Deep Learning Algorithms

Deep Q-Network (DQN) Key paper: Mnih et al. 2015
Deep Recurrent Q-Network (DRQN) Key paper: Hausknecht and Stone, 2015
Action-Specific Deep Recurrent Q-Network (ADRQN) Key paper: Zhu et al., 2018
Deep Variational Reinforcement Learning (DVRL) Key paper: Igl et al., 2018
Determinized Sparse Partially Observable Tree (DESPOT) Key paper: Ye et al. (2017)
C51 (Distributional DQN) Key paper: Bellamare et al. (2017)
Vanilla Policy Gradient (VPG) Key papers: Sutton et al. 2000, Schulman 2016(a), Duan et al.
2016, Schulman et al. 2016(b)
OpenAI implementation: link Trust Region Policy Optimization (TRPO) Key papers: Schul-
man et al. 2015, Schulman et al. 2016, Kakade and Langford 2002 OpenAI implementation:
link
Proximal Policy Optimization (PPO) Key papers: Schulman et al. 2017, Schulman et al.
2016, Heess et al. 2017 OpenAI implementation: link
Deep Deterministic Policy Gradient (DDPG) Key papers: Silver et al. 2014, Lillicrap et al.
2016 OpenAI implementation: link
Twin Delayed DDPG (TD3) Key papers: Fujimoto et al, 2018 OpenAI implementation: link
Soft Actor-Critic (SAC) Key papers: Haarnoja et al, 2018(a), Haarnoja et al, 2018(b),
Haarnoja et al, 2018(c) OpenAI implementation: link
AlphaZero Key paper: Silver et al, 2017
Generalized Advantage Estimation (GAE) Key paper: Schulman et al. 2015
Discriminative Particle Filter Reinforcement Learning (DPFRL) Key paper: Ma et al. 2020
Long-Short Term Memory (LSTM) Key paper: Hochreiter et al., 1997
SARSA Key paper: Rummery & Niranjan (1994)

41

B Comparative Results

Rock Sample (7,8)
Citation Algorithm Score "+/-"
Ong et al. (2009) MOMDP 21.47 0.04

Ye et al. (2017) SARSOP 21.47 0.04

Silver and Veness (2011) HSVI-BFS 21.46 0.22

Ong et al. (2009) SARSOP 21.39 0.01

Silver and Veness (2011) SARSOP 21.39 0.01

Silver and Veness (2011) AEMS2 21.37 0.22

Kurniawati et al (2008) SARSOP 21.27 0.13

Kurniawati et al (2008) HSVI2 21.27 0.09

Ye et al. (2017) DESPOT 20.93 0.3

Ye et al. (2017) DESPOT (unregularised) 20.9 0.3

Ye et al. (2017) AEMS2 20.89 0.3

Silver and Veness (2011) POMCP 20.71 0.21

Ye et al. (2017) POMCP 16.8 0.3

Silver and Veness (2011) Rollout 9.46 0.27

Rock Sample (10,10)
Citation Algorithm Score "+/-"
Ong et al. (2009) MOMDP 21.47 0.04

Ong et al. (2009) SARSOP 21.47 0.11

Rock Sample (11,11)
Citation Algorithm Score "+/-"
Ong et al. (2009) MOMDP 21.8 0.04

Ye et al. (2017) DESPOT 21.75 0.3

Ye et al. (2017) DESPOT (unregularised) 21.75 0.3

Ong et al. (2009) SARSOP 21.56 0.11

Silver and Veness (2011) SARSOP 21.56 0.11

Ye et al. (2017) SARSOP 21.56 0.11

Silver and Veness (2011) POMCP 20.01 0.23

Ye et al. (2017) POMCP 18.1 0.36

Silver and Veness (2011) Rollout 8.7 0.29

Ye et al. (2017) AEMS2 - -

42

Rock Sample (15,15)
Citation Algorithm Score "+/-"
Ye et al. (2017) DESPOT 18.64 0.28

Ye et al. (2017) DESPOT (unregularised) 18.15 0.29

Silver and Veness (2011) POMCP 15.32 0.28

Ye et al. (2017) POMCP 12.23 0.32

Silver and Veness (2011) Rollout 7.56 0.25

Silver and Veness (2011) SARSOP - -

Ye et al. (2017) SARSOP - -

Ye et al. (2017) AEMS2 - -

Tag (29)
Citation Algorithm Score "+/-"
Ong et al. (2009) MOMDP -6.03 0.04

Ong et al. (2009) SARSOP -6.03 0.12

Ye et al. (2017) SARSOP -6.03 0.12

Kurniawati et al (2008) SARSOP -6.13 0.12

Ye et al. (2017) DESPOT -6.23 0.26

Ye et al. (2017) AEMS2 -6.41 0.28

Ye et al. (2017) DESPOT (unregularised) -6.48 0.26

Ye et al. (2017) POMCP -7.14 0.28

Kurniawati et al (2008) HSVI2 -7.43 0.11

Tag (55)
Citation Algorithm Score "+/-"
Ong et al. (2009) MOMDP -9.9 0.11

Ong et al. (2009) SARSOP -9.9 0.12

AUV Navigation
Citation Algorithm Score "+/-"
Ong et al. (2009) MOMDP 1020 8.5

Ong et al. (2009) SARSOP 1019.8 9.7

Kurniawati et al (2008) SARSOP 722.59 1.3

Kurniawati et al (2008) HSVI2 721.45 0.75

43

	Abstract
	Introduction
	Literature Review
	Partially Observable Markov Decision Processes
	Mathematical Definition
	Exploration-Exploitation Trade-Off
	Types of POMDPs

	Algorithms for POMDPs
	Overview
	Deep Neural Networks
	Reinforcement Learning
	Deep Reinforcement Learning Models

	Methodology
	Overview
	POMDPX Parser
	Problem Descriptions and Benchmarks
	Model Extensions
	RADQN / RADRQN
	Flooding
	Pre-initialisation / Expert Buffer
	Model Architectures and Hyperparameters

	Results
	Maximum Scores
	Algorithm Scores

	Discussion
	Comparison to Tree-Based Planning Algorithms
	Recurrent Algorithms and Flooding Evaluation
	Training Times
	Fixed Policies
	POMDPX to OpenAI Gym Converter

	Conclusion
	Bibliography
	List of Key Deep Learning Algorithms
	Comparative Results

